首页
  • GM-3568JHF
  • M4-R1
  • M5-R1
  • SC-3568HA
  • M-K1HSE
  • CF-NRS1
  • CF-CRA2
  • 1684XB-32T
  • 1684X-416T
  • RDK-X5
  • RDK-S100
  • C-3568BQ
  • C-3588LQ
  • GC-3568JBAF
  • C-K1BA
商城
  • English
  • 简体中文
首页
  • GM-3568JHF
  • M4-R1
  • M5-R1
  • SC-3568HA
  • M-K1HSE
  • CF-NRS1
  • CF-CRA2
  • 1684XB-32T
  • 1684X-416T
  • RDK-X5
  • RDK-S100
  • C-3568BQ
  • C-3588LQ
  • GC-3568JBAF
  • C-K1BA
商城
  • English
  • 简体中文
  • 1684XB-32T

    • 一、简介

      • AIBOX-1684XB-32简介
    • 二、快速上手

      • 初次使用
      • 网络配置
      • 磁盘使用
      • 内存分配
      • 风扇策略
      • 固件升级
      • 交叉编译
      • 模型量化
    • 三、应用开发

      • 开发简介

        • Sophgo SDK开发
        • SOPHON-DEMO简介
      • 大语言模型

        • 部署Llama3示例
        • Sophon LLM_api_server开发
        • 部署MiniCPM-V-2_6
        • Qwen-2-5-VL图片视频识别DEMO
        • Qwen3-chat-DEMO
        • Qwen3-Qwen Agent-MCP开发
        • Qwen3-langchain-AI Agent
      • 深度学习

        • ResNet(图像分类)
        • LPRNet(车牌识别)
        • SAM(通用图像分割基础模型)
        • YOLOv5(目标检测)
        • OpenPose(人体关键点检测)
        • PP-OCR(光学字符识别)
    • 四、资料下载

      • 资料下载
  • 1684X-416T

    • 简介

      • AIBOX-1684X-416简介
    • Demo简单操作指引

      • shimeta智慧监控demo的简单使用说明
  • RDK-X5

    • 简介

      • RDK-X5 硬件简介
    • 快速开始

      • RDK-X5 快速开始
    • 应用开发

      • AI在线模型开发

        • AI在线开发
      • 大语言模型

        • 语音LLM应用
      • ROS2基础开发

        • ROS2基础开发
      • 40pin-IO开发

        • 40pin IO开发
      • USB模块开发使用

        • USB模块使用
      • 机器视觉技术实战

        • 机器视觉技术开发
  • RDK-S100

    • 简介

      • RDK-S100 硬件简介
    • 快速开始

      • RDK-S100 硬件简介
    • 应用开发

      • AI在线模型开发

        • AI在线开发
      • 大语言模型

        • 语音LLM应用
      • ROS2基础开发

        • ROS2基础开发
      • 机器视觉技术实战

        • 机器视觉技术开发
      • USB模块开发使用

        • USB模块使用

机器视觉技术开发

实验1-打开 USB 摄像头

  1. cd OPENCV #打开OPENCV功能包
  2. sudo python3 ./camera\_display.py #运行py文件

终端显示:

TOOL

此时Linux系统上会显示摄像头实时画面,我们需要在窗口焦点下测试按键,效果如下:

TOOLTOOL
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
摄像头读取程序
功能:打开摄像头并实时显示画面,支持多种功能
"""

import cv2
import numpy as np
import sys
import os
import time
import argparse
from datetime import datetime

def main():
    """
    主函数:打开摄像头并显示实时画面
    """
    # 解析命令行参数
    parser = argparse.ArgumentParser(description='摄像头实时显示程序')
    parser.add_argument('--width', type=int, default=1280, help='显示窗口宽度')
    parser.add_argument('--height', type=int, default=720, help='显示窗口高度')
    args = parser.parse_args()

    # 打开默认摄像头(通常是0,如果有多个摄像头可以尝试1,2等)
    cap = cv2.VideoCapture(0)

    # 检查摄像头是否成功打开
    if not cap.isOpened():
        print("错误:无法打开摄像头")
        sys.exit(1)

    # 设置摄像头分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, args.width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, args.height)

    # 创建一个可调整大小的窗口
    cv2.namedWindow('摄像头', cv2.WINDOW_NORMAL)
    cv2.resizeWindow('摄像头', args.width, args.height)

    print("摄像头已成功打开")
    print(f"窗口大小设置为: {args.width}x{args.height}")
    print("按键说明:")
    print("- 'q':退出程序")
    print("- 'g':切换灰度/彩色模式")
    print("- 'b':应用模糊效果")
    print("- 'e':应用边缘检测")
    print("- 'n':恢复正常模式")
    print("- 's':保存当前帧为图片")
    print("- '+':增大窗口")
    print("- '-':缩小窗口")

    # 默认设置
    gray_mode = False
    blur_mode = False
    edge_mode = False
    window_width = args.width
    window_height = args.height

    # 创建保存图像的目录
    save_dir = "captured_images"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    # 循环读取摄像头画面
    while True:
        # 读取一帧图像
        ret, frame = cap.read()

        # 如果读取失败,退出循环
        if not ret:
            print("错误:无法读取摄像头画面")
            break

        # 处理图像
        if gray_mode:
            # 转换为灰度图
            processed_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            # 转回三通道以便显示文字
            display_frame = cv2.cvtColor(processed_frame, cv2.COLOR_GRAY2BGR)
            mode_text = "Gray Mode"
        else:
            processed_frame = frame.copy()
            display_frame = processed_frame
            mode_text = "Color Mode"

        # 应用额外效果
        if blur_mode:
            processed_frame = cv2.GaussianBlur(processed_frame, (15, 15), 0)
            display_frame = processed_frame
            mode_text += " + Blur"

        if edge_mode and gray_mode:
            # 边缘检测需要灰度图像
            processed_frame = cv2.Canny(processed_frame, 100, 200)
            # 转回三通道以便显示文字
            display_frame = cv2.cvtColor(processed_frame, cv2.COLOR_GRAY2BGR)
            mode_text += " + Edge"
        elif edge_mode:
            # 如果不是灰度模式,先转换为灰度再进行边缘检测
            edges = cv2.Canny(cv2.cvtColor(processed_frame, cv2.COLOR_BGR2GRAY), 100, 200)
            # 将边缘叠加到原图上
            display_frame = processed_frame.copy()
            display_frame[edges > 0] = [0, 255, 255]  # 黄色边缘
            mode_text += " + Edge"

        # 添加模式文字
        cv2.putText(display_frame, mode_text, (10, 30),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)

        # 显示图像
        cv2.imshow('摄像头', display_frame)

        # 等待按键,如果是'q'则退出
        key = cv2.waitKey(1) & 0xFF
        if key == ord('q'):
            print("用户退出程序")
            break
        elif key == ord('g'):
            # 切换灰度/彩色模式
            gray_mode = not gray_mode
            print("切换到", "灰度模式" if gray_mode else "彩色模式")
        elif key == ord('b'):
            # 切换模糊效果
            blur_mode = not blur_mode
            print("模糊效果:", "开启" if blur_mode else "关闭")
        elif key == ord('e'):
            # 切换边缘检测
            edge_mode = not edge_mode
            print("边缘检测:", "开启" if edge_mode else "关闭")
        elif key == ord('n'):
            # 恢复正常模式
            gray_mode = False
            blur_mode = False
            edge_mode = False
            print("已恢复正常模式")
        elif key == ord('s'):
            # 保存当前帧
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = os.path.join(save_dir, f"capture_{timestamp}.jpg")
            cv2.imwrite(filename, frame)
            print(f"图像已保存: {filename}")

    # 释放摄像头资源
    cap.release()
    # 关闭所有OpenCV窗口
    cv2.destroyAllWindows()
    print("程序已退出")

if __name__ == "__main__":
    try:
        main()
    except Exception as e:
        print(f"程序发生错误: {e}")
        sys.exit(1)

## 实验2-颜色识别检测

  1. pip install opencv-python #下载open-cv数据库(另外需自行安装python3,如已下载可忽略)
  2. cd OPENCV #打开OPENCV功能包
  3. sudo python3 ./color\_detection.py #运行py文件

终端显示:

TOOL

此时Linux系统上会显示摄像头实时画面,我们需要在窗口焦点下测试按键,效果如下:

TOOL
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
多颜色同时识别程序
功能:实时识别摄像头中的多种颜色物体
"""

import cv2
import numpy as np
import sys
import os
import argparse

def main():
    """
    主函数:打开摄像头并进行多颜色同时识别
    """
    # 解析命令行参数
    parser = argparse.ArgumentParser(description='多颜色同时识别程序')
    parser.add_argument('--width', type=int, default=2560, help='显示窗口宽度')
    parser.add_argument('--height', type=int, default=1440, help='显示窗口高度')
    args = parser.parse_args()

    # 打开默认摄像头
    cap = cv2.VideoCapture(0)

    # 检查摄像头是否成功打开
    if not cap.isOpened():
        print("错误:无法打开摄像头")
        sys.exit(1)

    # 设置摄像头分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, args.width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, args.height)

    # 创建窗口并设置大小
    cv2.namedWindow('Original', cv2.WINDOW_NORMAL)
    cv2.namedWindow('Color Detection', cv2.WINDOW_NORMAL)
    cv2.namedWindow('Controls', cv2.WINDOW_NORMAL)

    # 设置窗口大小
    cv2.resizeWindow('Original', args.width // 2, args.height // 2)
    cv2.resizeWindow('Color Detection', args.width // 2, args.height // 2)
    cv2.resizeWindow('Controls', 600, 300)

    # 创建HSV颜色范围的滑动条
    cv2.createTrackbar('H_min', 'Controls', 0, 179, lambda x: None)
    cv2.createTrackbar('H_max', 'Controls', 179, 179, lambda x: None)
    cv2.createTrackbar('S_min', 'Controls', 0, 255, lambda x: None)
    cv2.createTrackbar('S_max', 'Controls', 255, 255, lambda x: None)
    cv2.createTrackbar('V_min', 'Controls', 0, 255, lambda x: None)
    cv2.createTrackbar('V_max', 'Controls', 255, 255, lambda x: None)

    # 定义颜色范围和对应的颜色名称及显示颜色
    color_ranges = {
        'red': {
            'ranges': [(0, 50, 50), (10, 255, 255), (160, 50, 50), (179, 255, 255)],  # 红色有两个范围
            'color': (0, 0, 255)  # BGR格式:蓝=0, 绿=0, 红=255
        },
        'green': {
            'ranges': [(35, 50, 50), (85, 255, 255)],
            'color': (0, 255, 0)  # BGR格式:蓝=0, 绿=255, 红=0
        },
        'blue': {
            'ranges': [(100, 50, 50), (130, 255, 255)],
            'color': (255, 0, 0)  # BGR格式:蓝=255, 绿=0, 红=0
        },
        'yellow': {
            'ranges': [(20, 100, 100), (30, 255, 255)],
            'color': (0, 255, 255)  # BGR格式:蓝=0, 绿=255, 红=255
        },
        'white': {
            'ranges': [(0, 0, 200), (180, 30, 255)],
            'color': (255, 255, 255)  # BGR格式:蓝=255, 绿=255, 红=255
        },
        'black': {
            'ranges': [(0, 0, 0), (180, 255, 30)],
            'color': (0, 0, 0)  # BGR格式:蓝=0, 绿=0, 红=0
        }
    }

    # 设置初始滑动条位置为自定义颜色
    cv2.setTrackbarPos('H_min', 'Controls', 0)
    cv2.setTrackbarPos('S_min', 'Controls', 0)
    cv2.setTrackbarPos('V_min', 'Controls', 0)
    cv2.setTrackbarPos('H_max', 'Controls', 179)
    cv2.setTrackbarPos('S_max', 'Controls', 255)
    cv2.setTrackbarPos('V_max', 'Controls', 255)

    print("多颜色同时识别程序已启动")
    print("按键说明:")
    print("- 'q':退出程序")
    print("- 's':保存当前帧和检测结果")
    print("- '+'/'-':调整窗口大小")

    # 循环读取摄像头画面
    while True:
        # 读取一帧图像
        ret, frame = cap.read()

        # 如果读取失败,退出循环
        if not ret:
            print("错误:无法读取摄像头画面")
            break

        # 转换到HSV颜色空间
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

        # 获取当前滑动条的值(用于自定义颜色检测)
        h_min = cv2.getTrackbarPos('H_min', 'Controls')
        h_max = cv2.getTrackbarPos('H_max', 'Controls')
        s_min = cv2.getTrackbarPos('S_min', 'Controls')
        s_max = cv2.getTrackbarPos('S_max', 'Controls')
        v_min = cv2.getTrackbarPos('V_min', 'Controls')
        v_max = cv2.getTrackbarPos('V_max', 'Controls')

        # 创建自定义颜色掩码
        custom_lower = np.array([h_min, s_min, v_min])
        custom_upper = np.array([h_max, s_max, v_max])
        custom_mask = cv2.inRange(hsv, custom_lower, custom_upper)

        # 创建检测结果图像
        detection_frame = frame.copy()

        # 处理自定义颜色
        contours, _ = cv2.findContours(custom_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        for contour in contours:
            area = cv2.contourArea(contour)
            if area < 500:  # 忽略太小的轮廓
                continue

            # 绘制轮廓
            cv2.drawContours(detection_frame, [contour], -1, (255, 255, 0), 2)  # 青色

            # 计算轮廓的外接矩形
            x, y, w, h = cv2.boundingRect(contour)

            # 在矩形上方显示"自定义"
            cv2.putText(detection_frame, "Custom", (x, y - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)

            # 绘制矩形框
            cv2.rectangle(detection_frame, (x, y), (x + w, y + h), (255, 255, 0), 2)

        # 对每种预定义颜色进行检测
        for color_name, color_info in color_ranges.items():
            # 创建掩码
            if color_name == 'red':  # 红色需要特殊处理(两个范围)
                lower1 = np.array(color_info['ranges'][0])
                upper1 = np.array(color_info['ranges'][1])
                lower2 = np.array(color_info['ranges'][2])
                upper2 = np.array(color_info['ranges'][3])

                mask1 = cv2.inRange(hsv, lower1, upper1)
                mask2 = cv2.inRange(hsv, lower2, upper2)
                color_mask = cv2.bitwise_or(mask1, mask2)
            else:
                lower = np.array(color_info['ranges'][0])
                upper = np.array(color_info['ranges'][1])
                color_mask = cv2.inRange(hsv, lower, upper)

            # 查找轮廓
            contours, _ = cv2.findContours(color_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            # 处理轮廓
            for contour in contours:
                area = cv2.contourArea(contour)
                if area < 500:  # 忽略太小的轮廓
                    continue

                # 绘制轮廓
                cv2.drawContours(detection_frame, [contour], -1, color_info['color'], 2)

                # 计算轮廓的外接矩形
                x, y, w, h = cv2.boundingRect(contour)

                # 在矩形上方显示颜色名称
                cv2.putText(detection_frame, color_name, (x, y - 10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, color_info['color'], 2)

                # 绘制矩形框
                cv2.rectangle(detection_frame, (x, y), (x + w, y + h), color_info['color'], 2)

        # 显示图像
        cv2.imshow('Original', frame)
        cv2.imshow('Color Detection', detection_frame)

        # 等待按键
        key = cv2.waitKey(30) & 0xFF

        # 处理按键
        if key == ord('q'):
            print("用户退出程序")
            break
        elif key == ord('s'):
            # 创建保存目录
            save_dir = "color_detection_images"
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)

            # 生成文件名
            import time
            timestamp = time.strftime("%Y%m%d_%H%M%S")
            original_filename = os.path.join(save_dir, f"original_{timestamp}.jpg")
            detection_filename = os.path.join(save_dir, f"detection_{timestamp}.jpg")

            # 保存图像
            cv2.imwrite(original_filename, frame)
            cv2.imwrite(detection_filename, detection_frame)
            print(f"已保存图像: {original_filename}, {detection_filename}")
        elif key == ord('+') or key == ord('='):  # '='键和'+'键通常在同一个键位
            # 增大窗口
            current_width = cv2.getWindowImageRect('Color Detection')[2]
            current_height = cv2.getWindowImageRect('Color Detection')[3]
            new_width = int(current_width * 1.1)
            new_height = int(current_height * 1.1)
            cv2.resizeWindow('Original', new_width, new_height)
            cv2.resizeWindow('Color Detection', new_width, new_height)
            print(f"窗口大小增加到: {new_width}x{new_height}")
        elif key == ord('-'):
            # 减小窗口
            current_width = cv2.getWindowImageRect('Color Detection')[2]
            current_height = cv2.getWindowImageRect('Color Detection')[3]
            new_width = int(current_width * 0.9)
            new_height = int(current_height * 0.9)
            cv2.resizeWindow('Original', new_width, new_height)
            cv2.resizeWindow('Color Detection', new_width, new_height)
            print(f"窗口大小减小到: {new_width}x{new_height}")

    # 释放资源
    cap.release()
    cv2.destroyAllWindows()
    print("程序已退出")

if __name__ == "__main__":
    try:
        main()
    except Exception as e:
        print(f"程序发生错误: {e}")
        sys.exit(1)

## 实验3-手势识别体验

第一步:系统准备

sudo apt update && sudo apt upgrade -y

sudo apt install -y build-essential cmake pkg-config python3-dev python3-pip(如若已装python3可忽略)

第二步:创建虚拟环境

cd OPENCV
python3 -m venv rdkx5\_vision\_envsource rdkx5\_vision\_env/bin/activate

第三步:安装依赖

pip install --upgrade pip
pip install -r requirements.txt

第四步:测试环境

python3 mediapipe\_gesture\_demo.py

TOOLTOOL

示例程序包含以下功能:

- ✅ 实时手势检测 - 支持双手同时识别

- ✅ 数字手势识别 - 识别1-5的手指数量

- ✅ 特殊手势识别 - OK手势、点赞手势

- ✅ 性能监控 - 实时FPS显示

- ✅ 可视化反馈 - 手部关键点绘制

import cv2
import numpy as np
import math
import time

# 初始化摄像头
cap = cv2.VideoCapture(0)

# 设置窗口大小
window_width = 1280
window_height = 720

# 调整摄像头分辨率
cap.set(cv2.CAP_PROP_FRAME_WIDTH, window_width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, window_height)

# 创建窗口
cv2.namedWindow('Hand Gesture Recognition', cv2.WINDOW_NORMAL)
cv2.resizeWindow('Hand Gesture Recognition', window_width, window_height)

# 创建调整肤色阈值的滑动条窗口
cv2.namedWindow('Skin Detection Controls')
cv2.resizeWindow('Skin Detection Controls', 400, 250)

# 创建肤色检测的HSV阈值滑动条
cv2.createTrackbar('H_min', 'Skin Detection Controls', 0, 179, lambda x: None)
cv2.createTrackbar('H_max', 'Skin Detection Controls', 20, 179, lambda x: None)
cv2.createTrackbar('S_min', 'Skin Detection Controls', 30, 255, lambda x: None)
cv2.createTrackbar('S_max', 'Skin Detection Controls', 150, 255, lambda x: None)
cv2.createTrackbar('V_min', 'Skin Detection Controls', 60, 255, lambda x: None)
cv2.createTrackbar('V_max', 'Skin Detection Controls', 255, 255, lambda x: None)

# 设置默认值
cv2.setTrackbarPos('H_min', 'Skin Detection Controls', 0)
cv2.setTrackbarPos('H_max', 'Skin Detection Controls', 20)
cv2.setTrackbarPos('S_min', 'Skin Detection Controls', 30)
cv2.setTrackbarPos('S_max', 'Skin Detection Controls', 150)
cv2.setTrackbarPos('V_min', 'Skin Detection Controls', 60)
cv2.setTrackbarPos('V_max', 'Skin Detection Controls', 255)

# 计算手指数量的函数
def count_fingers(contour, drawing):
    # 计算凸包
    hull = cv2.convexHull(contour, returnPoints=False)

    # 如果凸包点数太少,无法计算缺陷
    if len(hull) < 3:
        return 0

    # 计算凸包缺陷
    defects = cv2.convexityDefects(contour, hull)
    if defects is None:
        return 0

    # 计数有效的凸包缺陷(手指之间的缝隙)
    finger_count = 0

    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(contour[s][0])
        end = tuple(contour[e][0])
        far = tuple(contour[f][0])

        # 计算三角形三边长度
        a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
        b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
        c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)

        # 使用余弦定理计算角度
        angle = math.degrees(math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)))

        # 如果角度小于90度,认为是手指之间的缝隙
        if angle <= 90:
            # 在图像上标记缺陷点
            cv2.circle(drawing, far, 5, [0, 0, 255], -1)
            finger_count += 1

    # 缺陷数加1等于手指数(因为缺陷是指手指之间的空隙)
    return finger_count + 1

# 主循环
while cap.isOpened():
    success, image = cap.read()
    if not success:
        print("无法获取摄像头画面")
        break

    # 水平翻转图像,使其更像镜子
    image = cv2.flip(image, 1)

    # 创建一个副本用于绘制
    drawing = image.copy()

    # 转换为HSV颜色空间
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

    # 获取当前肤色阈值
    h_min = cv2.getTrackbarPos('H_min', 'Skin Detection Controls')
    h_max = cv2.getTrackbarPos('H_max', 'Skin Detection Controls')
    s_min = cv2.getTrackbarPos('S_min', 'Skin Detection Controls')
    s_max = cv2.getTrackbarPos('S_max', 'Skin Detection Controls')
    v_min = cv2.getTrackbarPos('V_min', 'Skin Detection Controls')
    v_max = cv2.getTrackbarPos('V_max', 'Skin Detection Controls')

    # 创建肤色掩码
    lower_skin = np.array([h_min, s_min, v_min])
    upper_skin = np.array([h_max, s_max, v_max])
    mask = cv2.inRange(hsv, lower_skin, upper_skin)

    # 应用形态学操作改善掩码
    kernel = np.ones((5, 5), np.uint8)
    mask = cv2.dilate(mask, kernel, iterations=2)
    mask = cv2.erode(mask, kernel, iterations=1)
    mask = cv2.GaussianBlur(mask, (5, 5), 100)

    # 查找轮廓
    contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # 找到最大的轮廓(假设是手)
    if contours:
        max_contour = max(contours, key=cv2.contourArea)

        # 只处理足够大的轮廓
        if cv2.contourArea(max_contour) > 5000:
            # 绘制轮廓
            cv2.drawContours(drawing, [max_contour], 0, (0, 255, 0), 2)

            # 计算并显示手指数量
            finger_count = count_fingers(max_contour, drawing)

            # 限制手指数量在1-5之间
            finger_count = max(1, min(5, finger_count))

            # 在图像上显示数字
            cv2.putText(
                drawing,
                f"Fingers: {finger_count}",
                (50, 50),
                cv2.FONT_HERSHEY_SIMPLEX,
                1,
                (0, 255, 0),
                2,
                cv2.LINE_AA
            )

    # 显示肤色检测结果
    cv2.imshow('Skin Detection', mask)

    # 显示最终结果
    cv2.imshow('Hand Gesture Recognition', drawing)

    # 显示使用说明
    cv2.putText(
        drawing,
        "Adjust sliders to detect skin color properly",
        (10, drawing.shape[0] - 40),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.5,
        (0, 0, 255),
        1,
        cv2.LINE_AA
    )

    cv2.putText(
        drawing,
        "Press 'q' to quit",
        (10, drawing.shape[0] - 10),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.5,
        (0, 0, 255),
        1,
        cv2.LINE_AA
    )

    # 按'q'退出
    if cv2.waitKey(5) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

## 实验4-Yolov5物体检测

实验步骤:

  1. 需安装python3、opencv、conda环境。(如已安装可略过、可参考实验1-3的环境安装流程)
  2. 克隆YOLOv5模型,终端输入指令:git clone https://github.com/ultralytics/yolov5
TOOL

3.cp -r /home/sunrise/yolov5 /home/sunrise/OPENCV/ #将yolov5文件包拷贝到功能包中保存

cd OPENCV
pip install -r /home/sunrise/OPENCV/requirements\_yolov5\_torch.txt

(安装 YOLOv5 运行的最小依赖)

TOOL

4.source rdkx5\_vision\_env/bin/activate #激活虚拟环境

5.安装关联包:

在OPENCV目录下

先升级 pip:python -m pip install --upgrade pip

运行以下命令:

pip install torch torchvision --extra-index-url [https://download.pytorch.org/whl/cpu](https://download.pytorch.org/whl/cpu))
pip install ultralyticspip install pandas psutil thop scipypython -m
pip install tqdm

后续可能用到,建议一起安装:python -m pip install pandas psutil thop pillow pyyaml requests matplotlib seaborn

(以下步骤可先忽略,先尝试运行示例文件,如若版本依赖过低导致无法运行模型再进行更新:

升级基础安装工具:python -m pip install -U pip wheel setuptools==70.0.0

安装/升级缺失依赖:python -m pip install -U gitpython pillow==10.3.0

)

  1. cd yolov5 #进入文件包
  2. python detect.py --weights yolov5s.pt --source 0 #运行摄像头版示例文件,需确保摄像头正常连接

终端打印如下:

TOOLTOOL

如若无摄像头,可选择本地图片或视频导入:

- 使用本地图片快速验证

- python detect.py --weights yolov5s.pt --source path\\to\\image.jpg #source后修改为图片路径

- 使用视频文件验证

- python detect.py --weights yolov5s.pt --source path\\to\\video.mp4 #source后修改为视频路径

#!/usr/bin/env python3
"""
RDK X5 MediaPipe手势识别示例程序
适用于地瓜派RDK X5开发板的视觉开发
"""

import cv2
import mediapipe as mp
import numpy as np
import time
import math

class MediaPipeGestureRecognizer:
    def __init__(self, camera_id=0, min_detection_confidence=0.7, min_tracking_confidence=0.5):
        """
        初始化MediaPipe手势识别器

        Args:
            camera_id: 摄像头ID
            min_detection_confidence: 最小检测置信度
            min_tracking_confidence: 最小跟踪置信度
        """
        # 初始化MediaPipe
        self.mp_hands = mp.solutions.hands
        self.mp_drawing = mp.solutions.drawing_utils
        self.mp_drawing_styles = mp.solutions.drawing_styles

        # 配置手部检测
        self.hands = self.mp_hands.Hands(
            static_image_mode=False,
            max_num_hands=2,
            min_detection_confidence=min_detection_confidence,
            min_tracking_confidence=min_tracking_confidence
        )

        # 初始化摄像头
        self.cap = cv2.VideoCapture(camera_id)
        self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
        self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
        self.cap.set(cv2.CAP_PROP_FPS, 30)

        # 性能监控
        self.fps_counter = 0
        self.fps_start_time = time.time()
        self.current_fps = 0

    def calculate_distance(self, point1, point2):
        """计算两点之间的距离"""
        return math.sqrt((point1.x - point2.x)**2 + (point1.y - point2.y)**2)

    def count_fingers(self, landmarks):
        """
        计算伸出的手指数量

        Args:
            landmarks: 手部关键点

        Returns:
            int: 伸出的手指数量
        """
        # 手指关键点ID
        finger_tips = [4, 8, 12, 16, 20]  # 拇指、食指、中指、无名指、小指
        finger_pips = [3, 6, 10, 14, 18]  # 对应的PIP关节

        fingers_up = 0

        # 检查拇指(特殊处理,因为拇指的方向不同)
        if landmarks[finger_tips[0]].x > landmarks[finger_pips[0]].x:
            fingers_up += 1

        # 检查其他四个手指
        for i in range(1, 5):
            if landmarks[finger_tips[i]].y < landmarks[finger_pips[i]].y:
                fingers_up += 1

        return fingers_up

    def detect_gesture(self, landmarks):
        """
        检测手势类型

        Args:
            landmarks: 手部关键点

        Returns:
            str: 手势名称
        """
        fingers_count = self.count_fingers(landmarks)

        # 基本数字手势(英文)
        if fingers_count == 0:
            return "Fist"
        elif fingers_count == 1:
            return "One"
        elif fingers_count == 2:
            return "Two"
        elif fingers_count == 3:
            return "Three"
        elif fingers_count == 4:
            return "Four"
        elif fingers_count == 5:
            return "Five"

        # 可以添加更复杂的手势识别逻辑
        # 例如:OK手势、点赞手势等

        return f"Unknown ({fingers_count} fingers)"

    def detect_ok_gesture(self, landmarks):
        """检测OK手势"""
        # 拇指尖和食指尖的距离
        thumb_tip = landmarks[4]
        index_tip = landmarks[8]
        distance = self.calculate_distance(thumb_tip, index_tip)

        # 如果拇指和食指很接近,可能是OK手势
        if distance < 0.05:
            return True
        return False

    def detect_thumbs_up(self, landmarks):
        """检测点赞手势"""
        # 拇指向上,其他手指弯曲
        thumb_tip = landmarks[4]
        thumb_mcp = landmarks[2]

        # 检查拇指是否向上
        if thumb_tip.y < thumb_mcp.y:
            # 检查其他手指是否弯曲
            fingers_down = 0
            finger_tips = [8, 12, 16, 20]
            finger_pips = [6, 10, 14, 18]

            for i in range(4):
                if landmarks[finger_tips[i]].y > landmarks[finger_pips[i]].y:
                    fingers_down += 1

            if fingers_down >= 3:
                return True
        return False

    def update_fps(self):
        """更新FPS计算"""
        self.fps_counter += 1
        if self.fps_counter >= 30:
            end_time = time.time()
            self.current_fps = 30 / (end_time - self.fps_start_time)
            self.fps_counter = 0
            self.fps_start_time = end_time

    def draw_info(self, image, gesture_text, hand_count):
        """在图像上绘制信息"""
        # 根据图像大小调整信息框大小
        height, width = image.shape[:2]
        info_width = min(500, width - 20)
        info_height = 140

        # 绘制背景矩形
        cv2.rectangle(image, (10, 10), (10 + info_width, 10 + info_height), (0, 0, 0), -1)

        # 根据图像大小调整字体大小
        font_scale = max(0.8, width / 800)
        thickness = max(2, int(width / 400))

        # 绘制文本信息(英文)
        cv2.putText(image, f"FPS: {self.current_fps:.1f}", (20, 45),
                   cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 255, 0), thickness)
        cv2.putText(image, f"Hands Detected: {hand_count}", (20, 85),
                   cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 255, 0), thickness)
        cv2.putText(image, f"Gesture: {gesture_text}", (20, 125),
                   cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 255, 255), thickness)

    def run(self):
        """运行手势识别主循环"""
        print("RDK X5 MediaPipe手势识别启动...")
        print("按 'q' 键退出程序")

        # 创建窗口(只创建一次)
        cv2.namedWindow('RDK X5 Gesture Recognition', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('RDK X5 Gesture Recognition', 1280, 720)

        while True:
            ret, frame = self.cap.read()
            if not ret:
                print("无法读取摄像头数据")
                break

            # 翻转图像(镜像效果)
            frame = cv2.flip(frame, 1)

            # 转换颜色空间
            rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

            # 处理图像
            results = self.hands.process(rgb_frame)

            gesture_text = "No Gesture"
            hand_count = 0

            # 如果检测到手部
            if results.multi_hand_landmarks:
                hand_count = len(results.multi_hand_landmarks)

                for hand_landmarks in results.multi_hand_landmarks:
                    # 绘制手部关键点
                    self.mp_drawing.draw_landmarks(
                        frame,
                        hand_landmarks,
                        self.mp_hands.HAND_CONNECTIONS,
                        self.mp_drawing_styles.get_default_hand_landmarks_style(),
                        self.mp_drawing_styles.get_default_hand_connections_style()
                    )

                    # 识别手势
                    gesture_text = self.detect_gesture(hand_landmarks.landmark)

                    # 检测特殊手势
                    if self.detect_ok_gesture(hand_landmarks.landmark):
                        gesture_text = "OK Gesture"
                    elif self.detect_thumbs_up(hand_landmarks.landmark):
                        gesture_text = "Thumbs Up"

            # 更新FPS
            self.update_fps()

            # 绘制信息
            self.draw_info(frame, gesture_text, hand_count)

            # 显示结果(只更新图像内容)
            cv2.imshow('RDK X5 Gesture Recognition', frame)

            # 检查退出条件
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

        # 清理资源
        self.cap.release()
        cv2.destroyAllWindows()
        print("程序已退出")

def main():
    """主函数"""
    try:
        # 创建手势识别器
        recognizer = MediaPipeGestureRecognizer(
            camera_id=0,
            min_detection_confidence=0.7,
            min_tracking_confidence=0.5
        )

        # 运行识别程序
        recognizer.run()

    except Exception as e:
        print(f"程序运行出错: {e}")
        print("请检查:")
        print("1. 摄像头是否正确连接")
        print("2. MediaPipe是否正确安装")
        print("3. OpenCV是否正确安装")

if __name__ == "__main__":
    main()
在 GitHub 上编辑此页
上次更新:
贡献者: wuziqing